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The problem of determining the accelerations and reactions of constraints in systems with Coulomb friction is discussed. It is 
shown that a realistic solution of the problem is possible provided only that allowance is made for deformations in the bodies 
comprising the system. For this purpose, the initial system is expanded by including local deformations among the generalized 
coordinates. Asymptotic methods are used to divide the expanded system into a "slow" initial subsystem and a "fast" subsystem 
that serves to determine the reactions. Analysis of the fast subsystem is the key to understanding the dynamics on the whole. 
The results obtained for the number of steady solutions and their stability are invariant with respect to the viscoelastic characteristics 
of the contact pairs. For every stable steady solution there is a realizable motion of the initial system, but in order to select the 
true motion one has to know the initial deformations and their derivatives with respect to time. Along with steady solutions, the 
"fast" subsystem may have stable oscillatory solutions. It is proved that to the stable limit cycle of the "fast" subsystem there 
correspond motions of the initial system in which the reactions oscillate at a high frequency about their mean values. The 
Painlev6-Klein system and the problem of braking a wheel with two brake shoes are considered as examples. © 2005 Elsevier 
Ltd. All rights reserved. 

Previous work in which allowance is made for deformations and fast motions has been widely used [1-5] 
to investigate systems with one friction pair in connection with solution of the Painlev6 paradoxes [6]; 
cases in which the fast subsystem has a unique stable equilibrium or no such equilibria (a catastrophe 
of the impact type) have been discussed. Examples of oscillations in the acoustic frequency range in 
systems with several friction pairs that have been considered are the "howling" of pistons [7] and brake 
shoe "squeal" [8]. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  T A K I N G  D E F O R M A T I O N S  
I N T O  A C C O U N T  

Suppose the configuration of a system of rigid bodies is described by coordinates q ~ R n. The 
displacements are subject to certain constraints, which are not generally ideal. We shall assume that 
the constraints are described by the reactions 

q j  = O, j = 1 . . . . .  k (1.1) 

Each of relations (1.1) corresponds to the contact of a pair of bodies. From a geometrical standpoint, 
it defines a plane containing the vectors of the possible relative displacements of the bodies, as well as 

T O) the tangential components " of the reaction R (j). The direction of the normal component of the 
reaction is that of a unit vector nj orthogonal to the plane in the sense of the Jacobi metric defined by 
the kinetic energy. Thus, 

R ()) = T ( ) ) + N j n j ,  j = 1 . . . . .  k 

~fPrikI. Mat. Mekh. Vol. 69, No. 3, pp. 372-385, 2005. 
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When the equations of motion are formulated, the constraints (1.1) are not taken into consideration, 
but their reactions are added to the active forces. Using the fundamental theorems of dynamics, we 
can write these equations in the form 

q = F(t ,  q, q, R (1) . . . . .  R(k)),  q, F, R (j) E R ~ (1.2) 

To describe the friction, we use laws of the form 

T (j) = Tj(q,q)Nj ,  j = 1 . . . . .  k (1.3) 

It is assumed that at the instant of time under consideration the velocities of relative slippage at all 
contacts are not zero. 

Substituting expressions (1.3) into Eqs (1.2), we obtain a system 

q = G(t ,q,  q, N t . . . . .  Nk) (1.4) 

where the function G is piecewise continuously differentiable in some domain that includes the initial 
values of the variables. 

In classical mechanics, system (1.4) is combined with equalities (1.1) to solve the fundamental problem 
of dynamics - to determine the generalized accelerations/t and the normal reaction Nj. One drawback 
of that approach is that it is not possible to describe high-frequency oscillations in directions normal 
to the surfaces (1.1); but such oscillations may sometimes be of considerable practical value [7-9]. In 
addition, in systems with dry friction one may obtain paradoxical situations in which system (1.1), (1.2) 
in unsolvable or has several solutions [6]. 

To eliminate these drawbacks, some (or all) of the constraints (1.1) will be dropped. From a physical 
standpoint, this is equivalent to changing from absolutely rigid bodies to deformable ones. Since the 
addition of degrees of freedom complicates the analysis, allowance is made in each specific case for 
only the most significant deviations from the absolutely rigid model, taking the physical properties of 
the bodies that comprise the system into consideration. 

Example. Two masses connected by a weightless rod can move along parallel guides. This system has been 
proposed [6] to demonstrate dry friction paradoxes. Here there are three constraints, expressing the fact that the 
masses cannot leave the guides, that the length of the rod is constant, and that a single coordinate q describes the 
displacement of the masses along the guides. To eliminate the paradoxes, it has been assumed [1] that the rod is 
stretched, so that an additional degree of freedom appears. As a single additional variable it has also been suggested 
[5] that one should take the longitudinal displacement of one of the guides. One can obtain a system with two 
additional coordinates by assuming that the rod is rigid but the guide is pliable in the normal direction. Combining 
these assumptions, one can construct a model with three or more additional coordinates. 

We shall assume henceforth that relations (1.1) may be violate by deformations and that the normal 
reactions are certain differentiable functions of the appropriate deformations and their velocities 

Nj = Nj(qj, glj), ONj/Oqj< O, ONjlOqj<O, ONj(O,O)/Oqj,/:O; j = 1 . . . . .  k (1.5) 

Inequalities (1.5) express the increase in stresses together with deformations, as well as the presence 
of dissipation. The last group of inequalities means that the stiffness of the constraints for infinitesimal 
deformations is non-zero. 

Substituting relations (1.5) into (1.4), we obtain a system of ordinary second-order differential 
equations. This model is not directly suitable for analysis, since the functions (1.5) are singular in nature 
in the sense of the estimates I qj I ~ 1, I ONj/Oqj ] -> 1. Hence small initial perturbations may turn out 
to have a significant effect on the nature of the solution of the system, and one cannot let qj ~ 0 in 
Eqs (1.4). 

With the aim of regularization, we replace qj and0j by new phase variables uj and vj (j = 1, . . . ,  k), 
whose values will not vanish when taking the aforementioned limit. 

In particular, we can put 

uj = Nj(qj, qj), vj = Oj/~, j = 1 . . . . .  k (1.6) 

where a is a small parameter characterizing the rate of deformation for the given loads. 
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Because of the first inequality in (1.5), transformation (1.6) is invertible. Transforming Eqs (1.4) 
accordingly, we obtain 

i l i=  G i, e@ = Uj, ei)j = Gj 

20Nj c)Nj 
U j = e  ~O.+ex-=- .  G., G = G ( t ,  qj(uj, eoj) ,qi ,  eo,(li )" j = l ,  k; i = k + l ,  n Oqj J ~qj j . . . . . . . . .  

(1.7) 

By the third group of inequalities in (1.5), we have 

qj  = O ( g ) ,  qj : O ( g 2 ) ;  j = 1, ..., k 

whence it follows that 

aNj/aqj  = 0(~-2),  ONj/OOj = 0 (~  -~) j = 1 . . . . .  k (1.8) 

By (1.8), the right-hand sides of system (1.7) are bounded as e + ~ .  Transforming to the "stretched" 
time "c = t/e, we obtain 

x' = e X ( x , y , ~ ) ,  y' = Y ( x , y , e ) ,  x(O) = x o, y(O) = Yo 

x = (t, qi, q/),  Y = (uj, vj) ,  X = (1, x ~ + / , G / ) ,  Y = (Uj, Gj)  

j = 1 . . . . .  k; i = k + l  . . . . .  n 

(1.9) 

where the prime denotes differentiation with respect to "c. 
The symbols Gi, Uj and Gj in system (1.9) denote piecewise continuously differentiable functions of 

the phase variables of the parameter ~ and t. The first group of equations describes "slow" variation of 
the phase variables in the classical model, while the remaining equations describe "fast" motions; in 
the classical approach, the latter are ignored, and the differential equations are replaced by the algebraic 
equations (1.1). 

Example. A point mass of unit mass is sliding along a rough guide under the action of a two- 
dimensional system of forces. We introduce a system of coordinates X O Y  in such a way that the guide 
lies along the abscissa axis and the initial velocity2 of the point is positive. Equations (1.2) become 

J( = -g[NI  + X ( x , A ) ,  y = N +  Y(x ,A)  (1.10) 

which g is the coefficient of friction. We assume that the function (1.5) is linear: 

2 
N = - 2 b c ¢ - c  y, c '>  1 (1.11) 

Put a = 1/c and change in Eqs (1.10) and (1.11) to the variables u = N, v = c3), q2 = x, p2 =2  and 
the "stretched" time "c = ct. We have 

q'2 = £P2, P'2 = £(X(q2, P2) - gIul), u' = - I)-  2bu - 2bY(q2, P2), l)' = u + Y(q2, P2) (1.12) 

If e = 0, the variables q2 andp2 will not vary with time and all the trajectories in the phase plane of 
fast motions (u, ~)) will tend to the equilibrium position u = -Y, ~) = 0 as z ~ 0% since the eigenvalues 
of the matrix of this linear subsystem are negative. Substituting the value u = - ] YI into the first two 
equations of (1.12) and returning to the original time t = ez, we obtain the well-known classical equation 

2 = x - g i r t  

In this example, all the fast motions approach a global attractor. Therefore, expansion of the classical 
model by admitting deformations is not desirable. Nevertheless, one cannot exclude a priori more 
complicated cases of fast dynamics, in which there are several attractors or that they have a complicated 
structure. In such cases it is not admissible to ignore the fast motions. 

A systematic approach to the analysis of system (1.9) will be proposed below. 
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2. A S Y M P T O T I C  S E P A R A T I O N  OF M O T I O N S  

We shall study system (1.9) using methods of asymptotic separation of motions [10-12]. Let us consider 
the associated system 

y' = Y(x ,y ,  0),  y(0)  = Y0 (2.1) 

The values of x in Eqs (2.1) are "frozen", playing the role of parameters. System (2.1) is of lower 
dimensions than (1.9), so it is easier to analyse. The aim of the analysis is to look of attractors: attractive 
equilibrium positions, limit cycles, and the like. Bearing in mind that the variables x in system (1.9) 
vary with time, we require the attractors to be structurally stable. In the case of equilibrium positions 
and limit cycles, it is sufficient to that end to require stability in the first approximation. 

Let us assume that at x = x0 system (2.1) has an equilibrium position y = y*, and that all the 
eigenvalues of the Jacobi matrix 

Jo = J(xo) = 113Y(xo, Y*, O)/OYll 

have negative real parts. By the implicit function theorem, there is a neighbourhood of the point 
(x0, y*) in which one can construct an equilibrium surface y = y(x) of class C1, at whose points 
Y(x, y(x), 0) = 0, and moreover y* = Y(x0). 

Define a comparison system by 

= c X ( i , ~ ( i ) , 0 ) ,  i (0 )  = x 0 (2.2) 

The phase variables in system (2.2) are the generalized coordinates and velocities of the original system 
(1.1), but deformations of the constraints are excluded: when one returns to the original independent 
variable, the parameter ~ disappears. 

The following well-known proposition [11, 12] will be proved below by a method that will enable us 
to obtain certain further generalizations. 

Proposition 1. Positive numbers ~1, T, C and 8 exist such that, for all a, "¢ and Y0 that satisfy the 
conditions 

0<a<~,, O<x<_Tl~, IlY0-Y*ll<~ 

the solutions of systems (1.9) and (2.2) are close together in the sense of the inequality 

(2.3) 

Proof. Under the above assumptions, one can construct a Lyapunov function for system (2.1) as a 
quadratic form in w = y - y(x) 

V(w) = l /2(Bw, w),  ~ = (BW, J ( x ) w )  + O([]w[[ 3) < -C1 W2 (2.4) 

where C1 = const > 0, B = B(x) is a symmetric positive matrix. Inequality (2.4) will be satisfied for 
fairly small values of []wl] and ]lx - x0]l. 

Note that if e ~ 0, then the value w = 0 will not satisfy system (1.9). Nevertheless, the function (2.4) 
may serve as a measure of the deviation of the "fast" variables from their equilibrium values. The 
derivative of this function along trajectories of Eqs (1.9) is 

0y  
V' = \(Bw' Y(x, w + ~(x), e) - e~--~X(x, w + ~(x), e)) + o(llwll 3) ~ - c2 w2 + c3~llwll 

J 
(2.5) 

Inequality (2.5) will hold for certain constants C 2 and C 3 if the numbers ~ and ]1 x -  x0 I[ are sufficiently 
small and all the eigenvalues of the characteristic matrix 

J(x)  = ll3Y(x, y(x), o)/3ylt 

have negative real parts. The number ][ x - x0][ may be made small by suitable choice of the constant 
T (which does not depend on e). 
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By inequality (2.5), V'  is negative in the spherical layer 

C 4 > Ilwll - EC3[C2 

where C4 is a constant. Thus, if this layer contains the level surface V(w) = V(wo), the inequality 
V(w) < V(w0) will hold in the time interval where inequality (2.5) holds. 

To estimate the magnitude of the deviation oz(x) = x(z) - ~('c), it will suffice to change to integral 
equations 

--- x 0 + a I X ( x ( s ) ,  y(s) ,  e)ds, i( 'c)  = x 0 + e f X ( i ( s ) ,  y(s) ,  O)ds X(T) 

0 0 

Hence it follows that 

By Gronwall's Lemma 

"c 

J (X(~) --< C4E~  + C5E o~(s)ds 
0 

~(~) N C4E2Texp(CsE~) 

(2.6) 

which implies the estimate (2.3). 
Let us assume now that at x = x0 system (2.1) has a periodic solution y = F0('c) which is stable in 

the first approximation. Then for values of x close enough to x0, it will also have a periodic solution 
y = F(x, "c) close to F0. Denote the period of this solution by T(x). 

We define a comparison system by averaging the right-hand sides along the trajectory F(x, % We have 

T(~) 
1 

~' = ~(X(~)),  ~(t 0) = x 0, (X(~)) - T(~) f X(£,F(~, '~) ,0)dz (2.7) 
0 

As in the case of comparison system (2.2), Eqs (2.7) do not include deformations. 

Propos i t ion  2. Positive numbers El, T, C and g exist such that, for all ~, z and Y0 satisfying the conditions 

0 < ~_< F..,I, 0 < '17--< T/E, Hyo-r(x0, o)11 < 5 

the solutions of systems (1.9) and (2.7) are close together in the sense that 

IIx(z) - x(~)lt + tly(z) - F(~(x), ~)11 ~< c~ (2.8) 

The formal proof of this proposition is analogous to that of Proposition 1 for the discrete time case. 
The transition to a discrete system involves the construction of a Poincar6 map in the neighbourhood 
of a period trajectory F(x, "c). One first constructs a quadratic Lyapunov function for ~ = 0 and then 
uses it to estimate the smallness of the second term in (2.8). It then remains to apply Bogolyubov's 
theorem on averaging systems in standard form. 

3. S Y S T E M  W I T H  ONE  C O N S T R A I N T  

We will now proceed to a qualitative analysis of system (2.1). In the simplest case, when k = 1 in (1.1), 
the phase space is two-dimensional. Typical attracting sets in such systems are equilibrium positions 
and limit cycles, and the results presented in Section 2 can be used. 

We shall assume that the phase variables are defined by formulae (1.6), where k = 1. Equations (2.1) 
become 

u' = ap(u, v ) o +  qJ(u,  v ) f ( u ) ,  v' = f ( u )  

20N~ q~ ON1 (3.1) 
¢~ = ~ = E-~-7-. ~ , f ( u )  = Gl(t 0, q l ( u ) ,  qi, O, dli ) 

Oql ' oq l  
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The equilibrium positions of system (3.1) are points of the form (u*, 0), where f(u*) = 0. For the 
Jacobian at these points we have 

J0 = ~Pf'(u*) 
f '(u*) 0 

Since W < 0, • < 0 because of the restrictions (1.5), we obtain the following. 

Proposition 3. If 

f (u*) = O, f'(u*) >0 (3.2) 

then (u*, 0) is an equilibrium position of system (3.1) which is asymptotically stable in the first 
approximation. If the reverse inequality to (3.2) holds, the equilibrium is unstable. 

By Proposition 1, for each root of the equationf(u) = 0 that satisfies condition (3.2) there is a solution 
of the complete system (1.9) that is stable in the sense of inequality (2.3). Note that this conclusion 
about the number and stability of equilibrium positions is invariant to the form of the function N(q, (t) 
(provided that conditions (1.5) hold). In particular, one can single out the following important special 
case. 

Proposition 4. Consider system (1.2) with k = 1. If there are values of t, q, ~1 such that the partial 
derivative OF1/ON1 exists for almost all N1 and moreover 

OF1/ON l > c 1 > 0 (3.3) 

then the fundamental problem of dynamics for system (1.1), (1.2) has a unique steady solution, which 
is moreover stable. 

Note that condition (3.3) is always satisfied in cases for which the constraint is ideal or in the case 
of viscous friction (the friction force is independent of the normal reaction). Indeed, reasoning from 
the Lagrange equations, one can represent Eqs (1.2) in the form 

= A I(NI,0 . . . . .  0)T+. . .  

where A is the matrix of the quadratic part of the kinetic energy and the unwritten terms do not depend 
on N1. Consequently, the quantity OF1/ON1 is equal to a corner element of the positive-definite matrix 
A -1. 

Whether the problem admits of oscillatory solutions, corresponding to limit cycles of system (2.1), 
depends on the specific form of the function (1.5). We will confine ourselves to the case that is simplest 
and most frequently used in practical computations - when that function is linear (so that its partial 
derivatives are constant). 

Proposition 5. If q5 and • in system (3.1) are constant, the system has no periodic solutions other 
than its equilibrium positions. 

Proof. Let H(u) be some primitive function forf(u).  Consider the function 

V(u, v) = 1/2~v 2-  II(u) 

The derivative of this function along trajectories of system (3.1) has the form 

(3.4) 

V' = dPl)l)'- f(u)u' = - ~ f 2 ( u )  

Iff(u) is not identically equal to zero for some solution, then V' < 0, and this solution cannot be periodic, 
as required. 

Let us sum up. In a system with one constraint, the dynamics is determined by the number of zeros 
of the functionf(u) in Eq. (3.1) for which inequality (3.2) holds. For each such value u* a realistic solution 
of the fundamental problem of dynamics exists, the absence of such values indicates a rapid, unbounded 
increase in the reaction N (a catastrophe of the impact type). To choose the true solution from several 



344 A.P. Ivanov 

possibilities, the initial deformations must be taken into account, as in Euler's classical example of the 
bifurcation of a loaded column. 

Example.  Let us formulate the equations of motion in the Painlev6-KIein example, assuming that 
the rod is deformable and that the guides are absolutely rigid. Suppose at a given instant of time the 
particles are sliding to the right. Assuming that they have unit mass, we can express the fundamental 
theorems of dynamics by the equations 

~1 = X,-g~]Nl]-Rcosqo, 5(2 = X2-g2]N2[ +Rcosq) 

N 1 -- Rsinqo- Y1, N 2 -- - Rsin¢9- Y2 (3.5) 

wherexl andx2 are the coordinates of the particles, (X1, I11) and (X 2, I72) are the external forces applied 
to them, R is the reaction of the rod (the inequality R > 0 means that the rod is stretched), gt 1 and g2 
are the coefficients of friction, q0 is the angle between the rod and the guides (variations of this angle 
due to deformations will be ignored), and 21 is the length of rod. (An analogous system has been 
considered in the special case when I11 = Y2 = 0 [1, 4, 6].) 

Noting thatxl -x2 = (2 l -  8)cosrp and subtracting the first equality of (3.5) from the second, we obtain 

= X* + g ~ j R -  Y*I -g*IR+ Y*I+ 2R 

X* = ( X 2 - X l ) / C O S %  g1"2 = gl,2tgq ), Y* = Y1 2/COSq ) 1,2 
(3.6) 

The right-hand side of Eq. (3.6) is identical with the functionf(u) in (3.1), where u = R. Let us find 
the zeros of this function as a function of the parameters of the problem. Put 

~.l_+ --- ~ -----~ ~(~L 1 +/-t2)tgq0 

The case Y~ + Y~ = 0. We have 

f ( u )  = X* + g_[u- Y*t + 2u (3.7) 

The graph of the function (3.7) is a broken line, with segments of slopes 2 - g+ and 2 + g_ and break 
point ul = Y~, fl  -- X* + 2Y~. The assumptions of Proposition 4 are expressed by the inequality 

I/.tl < 2 (3.8) 

which is precisely the condition for the compatibility of the constraints obtained in [4] on the assumption 
that Y~ = Y~ = 0. 

If g_ > 2, the break point of the line is a minimum. Thus, iff l  > 0, the function (3.7) has no zeros 
(an impact catastrophe), but if f l  < 0, it will have two zeros u ~, 2, for which u~ < u l , f ' (uO < 0 (instability) 

bt gr (/ j  *'~ and u~ > 1,J t 2) > 0 (stability). 
If g_ < -2, the break point of the line is a maximum. Thus, if f l  < 0, the function (3.7) has no zeros 

(an impact catastrophe), but iffl  > 0, it will have two zeros u 7, 2, for which u 1 < 1,J l, 1) > 0 (stability) 
bl "et z u  *'~ and u~ > 1,J t 2) < 0 (instability). 

In terms of the theory of singularities, the violation of inequality (3.8) leads to a fold [13]. 

The case Y~ + Y~ < 0. The graph of the function (3.6) is a broken line with segments of slopes 
2 - g_, 2 + g+ and 2 + ~_. The results are analogous to those presented above: the validity of inequality 
(3.8) guarantees the existence of a unique - and stable - solution, but the reversed inequality attests 
either to an impact catastrophe or to the existence of a stable solution and an unstable one (a fold). 

The case Y~ + Y~ > 0. The graph of the functionf(u) is a broken line whose segments have slopes 
2 - g_, 2 + g+ and 2 + g_. If inequality (3.8) is reversed, two of these slopes (including the middle one) 
are negative and the third positive. By analogy with the previous case, we have a fold. 

If 

g+ < 2 (3.9) 
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the assumptions of Proposition 3 are satisfied, and the fundamental problem of dynamics has a unique 
- and stable - solution for any values of X*, Y~,z- 

If inequality (3.8) holds but inequality (3.9) is reversed, the broken line is zigzag-shaped: the slope 
of its outer segments is positive, and that of the middle segment, negative. In that case, depending on 
the value of X*, one has either a unique (and stable) solution or two stable solutions plus one unstable 
one (a cusp). 

Note that the conclusion as to the number of equilibria of system (3.5) has nothing to do with the 
consideration of deformations; it may be derived from algebraic considerations []3]. As to the nature 
of the stability, it will be seen below that the situation depends on the choice of the deformation space. 

4. T H E  CASE OF TWO C O N S T R A I N T S  

If k = 2, the phase space of system (2.1) is four-dimensional. By analogy with Eqs (3.1), we write the 
equations of motion of the subsystem in the form 

uj = Oj(uj, 1)j)Vj + ~j(uj, vj)fj(up U2) , l)j = f j ( U l ,  U2) 

f j (up u 2) = G/ t  o, ql(ul), q2(u2), qi, O, O, qi); J = 1, 2 
(4.1) 

The equilibrium positions of system (4.1) may be found by simultaneous solution of the equations 

f j ( U l ,  U2) = 0, f2(up U2) = 0 (4.2) 

Let (u~, u~) be some solution of system (4.2). The Jacobi matrix is 

A = Ila011 = IlOfi(u*,u*)/Oujll (4.3) 

Proposition 6. If the conditions 

atl >0,  a22>0, de tA>0,  a12a21 >0  (4.4) 

are satisfied, then (u*, 0) is stable equilibrium position of system (4.1). But if at least one of the conditions 
(1) detA < 0, (2) all  < 0, a22 < 0 is satisfied, that equilibrium is unstable. 

Proof. Linearizing system (4.1) in the neighbourhood of the equilibrium, we obtain 

'=  ~A.~ ~ , W = diag{hul, h°2}, • = diag{01, O2} I1 

v A 0 
(4.5) 

where the values of the functions ~j  and Oj are evaluated at the equilibrium position. 
We introduce the notation 

~0 = O 1 0 2 '  ~1 ---- ~ 1 0 2  + ~IJ201, Z2 ----- trtJltI/2, Z3 = a~lO1 + a2202,  )~4 -- a l l ~ l  + a22Utt2 

The characteristic equation for system (4.5) has the form 

P4 ~4 + P3 ~'3 + P2 ~'2 + Pl )~ + P0 = 0 

P4 = 1, P3 = -~4, P2 = )~2detA-x3, Pl = z~detA, Po = Zo detA 
(4.6) 

It is well known [14] that the roots of Eq. (4.6) lie in the left half-plane if and only if 

2 2 
ps>O, s = 0, 1 ,2 ,3 ,4 ;  p4pl-plpzp3+poP3<O (4.7) 

We will first prove the case of instability. If detA < 0, thenpo < 0, but if an  < 0, a22 < 0, thenp3 < 0 
irrespective of the dependence on the values of ~s < 0, • s < 0. In both cases, the first group of 
inequalities in (4.7) fails to hold. 
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To prove stability, we observe that the first three conditions of (4.4) automatically imply the truth of 
the first group of inequalities (4.7), while the last inequality, in view of (4.6), may be written as follows: 

"~ 2 2 
ZldetA < - XoX1Z3detA + )~3(alltlUldP2 + a22qI)ltlJ2) (4.8) 

Since a12a21 > 0, it follows that detA < alia22. Replacing detA on the left of (4.8) by alia22 and dropping 
the first term on the right (which is always positive), we obtain the stronger condition 

"~ 2 2 
x-lalla22 < Z3(al~hUlqb 2 + a22~blud2) (4.9) 

Taking the expressions for ;(1 and •3 into consideration, removing parentheses in (4.9) and collecting 
like terms, we arrive at the inequality 

2 2 2 "~ 
2 a j  la22t~lqs2 < allhul + a22tl~2 (4.10) 

the truth of which follows from the theorem on the relationship between arithmetic and geometric means 
(generally speaking, inequality (4.10) may be replaced by an equality, but in that case the weaker 
inequality (4.8) holds in the strict sense). This proves the proposition. 

Remark 1. As in the case considered in the previous section, that of a single friction pair, the assumptions of 
Proposition 6 relate only the dynamic characteristics of the system and are invariant to the viscoelastic properties 
of the contact pairs. We shall show that, if the matrix A satisfies the first three conditions of (4.4), but a12a2~ < 0, 
or A > 0, a~aa22 < 0, then the equilibrium may be either stable or unstable, depending on the coefficients ~s and 
%. 

Consider the first of these cases. The first term on the right of inequality (4.8) is of degree 4 in the coefficients 
dOs, but the other terms are only of degree 2. Consequently, the truth of the inequality may be achieved by taking 
dOl = dO2 to be sufficiently large numbers. On the other hand, if these numbers are close to zero, the principal term 
on the right of inequality (4.8) will be the second. If a11~I*l = a22~2, then inequality (4.9) becomes an equality, and 
so, by virtue of our assumption a12a21 < 0, condition (4.8) fails to hold. 

If the second case, assigning a sufficiently large value to whichever of the coefficients dOs corresponds to the 
negative element ass we obtain P3 < 0, indicating instability. Conversely, if dOs is sufficiently small, the stability 
conditions (4.7) are satisfied. 

Remark 2. Suppose the first three conditions (4.4) are satisfied, but the fourth is not. Then the first group of 
inequalities (4.7) will hold, but the truth of the last inequality will depend on the numbers q~ and qJs, which 
characterize the viscoelastic properties of the deformations. Varying these numbers, one can modify the nature of 
the stability. This modification is accompanied by the appearance of a pair of pure imaginary roots of the characteristic 
equation (4.6), indicating bifurcation - the birth of a cycle - in accordance with the Poincard-Andronov-Hopf 
scenario. 

For systems with three or more friction pairs, results analogous to Proposition 6 have not yet been 
established. The following propositions relating to the case under consideration are less general in nature. 

Proposi t ion 7. I fA is a symmetric positive-definite matrix, the equilibrium position of system (4.1) 
is asymptotically stable for any negative numbers ~s and ~Ps. 

The validity of this statement follows from the Kelvin-Tait-Chetayev theorem. 

Proposi t ion 8. If at least one of the following two conditions is satisfied 

1) detA < 0, 2) ass < 0, s=  1 . . . . .  k 

the equilibrium position of system (4.1) is unstable for any negative numbers Os and q?s. 
The proof  is analogous to that of Proposition 6. 

5. ANALYSIS  OF T H E  P A I N L E V I ~ - K L E 1 N  S Y S T E M  

Let us consider the Painlev6-Klein example considered above under different physical assumptions: 
the length of the rod is fixed, and the guides are deformable. We shall assume that in 1 = rn2 = 1/2. The 
equations of motion of the rod may be written as follows [13]: 
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Je = -~t, INll-~t21N2l + X, y = ' - N I  + N2 + Y 

kaq5 = h(btllNll-g21N21)-b(Nl +N2), b = lcosq)*0 
(5.1) 

where k = l is the radius of inertia of the rod, 2h is the distance between the guides, x and y are the 
coordinates of the centre of mass, q0 is the angle between the rod and the guides, and X, Y and M are 
the applied forces and the torque. 

We introduce the coordinates ql, 2 = h -/sinq~ 7- y, which represent the local deformations of the 
guides. Ignoring the variations of the variables y and (p in the equations of motion, we deduce from 
Eqs (5.1) that 

~]j = (-1)J(N2-NI+ Y)+~(b(N 1 + N 2 ) - M ) - ~ 2 ( ~ l l N l I - ~ 2 1 N 2 1  ), j : 1,2 (5.2) 

The equilibrium positions of system (5.2) may be found by equating the right-hand sides to zero. 
Adding and subtracting the equations of the system, we obtain 

N 1 = N2+ Y, 2~CNz-p.,IN2+ Yl+~t21N21 = M* 

M* = M / h - K Y ,  ~; = b/h --- ctgqo (5.3) 

Since the second equation of (5.3) contains two absolute value symbols, it follows that, depending 
on the coefficients of friction and the quantities Y and M, that the number of solutions varies from zero 
to three [13]. The matrix (4.3) is 

A = 
sin2q) 1 + 21~ 2 -  v 1 - 1 - v 2 

- 1 - v  I 1 + 2 K 2 - v 2  

vj = ( -1) (J+l)~s jg j ,  Sj---- signNj, j = 1, 2 

(5.4) 

The determinant of A is equal to 

detA = 2(2~ 2 -  v I - V2) sin2q) (5.5) 

Proposition 6, applied to the matrix (5.4), implies the following results: if the conditions 

V I + V 2  < 2 K 2 ,  VI,2 < 1 + 2 K 2  (1 + V l ) ( 1  + V 2 ) > 0  (5.6) 

are satisfied, the equilibrium is asymptotically stable; but if 

V 1 + V 2 > 2K 2 (5.7) 

it is unstable. 
In the plane of the parameters v1, v2, the domain (5.6) is the union of a triangle and a rectangular 

sector, while (5.7) is a half-plane (the unstable domains are shown in Fig. 1 by double hatching and the 
stable domains by single hatching). 

In view of the relations 

= Ivjl/ , j = 1, 2 

the plane is divided by the four straight lines +-vl +- v2 = 2 ~  (the dotted lines in Fig. 1) into parts that 
differ in the number of solutions of system (5.3). 

1. The interior of the square 

IVll ÷ lv2t < 2~c 2 (g.8) 

corresponds to the regular case: system (5.3) has a unique solution for any Y and M* [13]. Depending 
on the slope of the rod % there are two possibilities: 
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v2 (a) 

".,% 
"',,. 

Fig. 1 

(l)  If 

q0 > arctg 4~ = 54.7 ° (5.9) 

the square (5.8) is in the interior of the stable domain (5.6) (Fig. la). 
(2) If inequality (5.9) is reversed, part of the aforementioned square is in the stable domain (5.6) 

and part in a domain where the nature of the stability depends on the form of the functions (1.5) 
(Fig. lb). Note that the change in the nature of the stability is associated in this case with bifurcation 
and the birth of a ~ycle, since the characteristic equation (4.6) has a zero root only at points of the straight 
line vl + v2 = 2W ~. 

2. If 

II VII --tV2t[ > 21122 (5.10) 

system (5.3), depending on Yand M*, has two solutions or none at all [6]. Condition (5.10) is satisfied 
in the four rectangular sectors formed by the continuations of the sides of the square (5.8). 

To fix our ideas, let us assume that gl > g2 + 2~: (that is, we are considering the left and right sectors). 
It can be verified that if system (5.3) has two solutions, they differ in the sign of Vl. One of the points 
corresponding to them in the (Va, v2) plane lies in the right sector (instability) and the other, in the left 
sector (stability or possible stability). 

3. If inequalities (5.8) and (5.10) are reversed, system (5.3) may have one or three solutions [13]. 
Corresponding to this case, in the (vl, v2) plane are the four half-strips adjacent to the sides of the square 
(5.8). Analysis of the second equation of (5.3) shows that, if the solution is unique, the corresponding 
point lies in the second, third or fourth quadrant. In the case of three solutions, one of them is 
represented by a point in the first quadrant, the other two, by points in the second and fourth quadrants. 
Thus, there are two realistic solutions of the equations of motion. In order to determine which of them 
actually occurs, the initial deformations must be taken into consideration. 

6. E X A M P L E  OF AN O S C I L L A T O R Y  S O L U T I O N  

Let us consider the braking of a rotating disk by means of two identical brake-shoes mounted at an 
angle c~ to one another (Fig. 2). The coordinates ql and q2 are defined as minus the normal deformations 
of the shoes at the points of contact. External forces are assumed to press the disk to the shoes, so that 
these quantities remain negative. 

The theorem on the motion of the centre of mass in the projections onto directions perpendicular 
to the shoes implies the equations 

m//' l = N 1 + N2(gs in~-  coso0 + F 1, mq2 = N 2-  Nt(gsino~ + cos~) + F 2 (6.1) 

where m is the mass of the disk, g is the coefficient of friction, F~ and F2 are the projections of the 
principal vector of external forces, and N~ and N2 are the normal reactions of the shoes. 
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The matrix (4.3) has the form 

A = 1 1 ~tsinc~-cosc~ 
m - ~t sin o~ - cos cx 1 

(6.2) 

Since the diagonal elements and determinant of the matrix (6.2) are positive, system (6.1) has a unique 
equilibrium position [13]. Conditions (4.4) reduce to the inequality 

. <  Ictg~l (6.3) 

Inequality (6.3) guarantees the stability of the equilibrium irrespective of the dependence on the 
specific form of the stresses as functions of the deformations. If o~ is a right angle, the inequality has 
no solutions. The inequality holds for obtuse and acute angles at sufficiently small values of the coefficient 
of friction. 

The case of a right angle c~ merits a more detailed discussion. Since condition (6.3) fails to hold, the 
form of the functions (1.5) must be taken into consideration to solve the problem of stability. The first 
group of inequalities (4.7) holds for any admissible values of ~ / an d  ~ ' / ( j  = 1, 2), but the last inequality 
may or may not hold. If that inequality becomes an equality, this corresponds to a bifurcation and the 
birth of a cycle. The frequency of the periodic motion born in the bifurcation may be estimated from 
the first approximation, but determination of the direction of the bifurcation and the amplitude requires 
a non-linear analysis [15]. 

Let  us assume that in equilibrium ~j = q~, ~j = ~ (j = 1, 2). Then the stability conditions (4.7) reduce 
to the inequality 

_ 2  0 < ~2(1 + 2 )  (6.4) 

Reversal of this inequalit~ indicates bifurcation and birth of a cycle, the frequency of the periodic 
motion then being co = -(p. + 1)~/g. 
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